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ABSTRACT

Supporting a large number of outstanding memory requests in

miss handling architecture (MHA) is critical for throughput pro-

cessors such as GPUs to achieve high memory level parallelism.

Conventional MHA is static in sense that it provides a fixed number

of MSHR entries to track primary misses, and a fixed number of

slots within each entry to track secondary misses. This leads to

severe entry or slot under-utilization and poor match to practical

workloads, as the number of memory requests to different cache

lines can vary significantly. In this paper, we propose Dynamically

Linked MSHR (DL-MSHR), a novel approach that dynamically forms

MSHR entries from a pool of available slots. This approach can

self-adapt to primary-miss-predominant applications by forming

more entries with fewer slots, and self-adapt to secondary-miss-

predominant applications by having fewer entries but more slots

per entry. Evaluation results show that, compared with the conven-

tional MSHRs, the proposed DL-MSHR is able to reduce reservation

fails in MSHRs by 88.1%, improve MSHR utilization by 53.7% and

increase the overall IPC of a wide range of workloads by 19.2%,

on average, with only 0.6% and 0.1% area overhead on L1D and L2

cache, respectively.

1 INTRODUCTION

Many-core processors have an increasing demand for higher mem-

ory level parallelism (MLP) to achieve better performance [8]. Con-

sequently, a large number of outstanding memory requests need to

be tracked simultaneously in the memory subsystem by the miss

handling architecture (MHA). This demand becomes more pressing

in GPUs, as the single instruction multiple threads (SIMT) model

can easily execute hundreds to thousands of threads concurrently,

resulting in numerous memory requests pending in the memory hi-

erarchy. Thus, it is imperative to design miss handling architectures

that can process and track cache misses at a matching rate.

MHA has been evolving continuously in the past years, with

most of today’s GPUs having MHA based on Miss Handling Status

Registers (MSHRs). When a requested data is not found in the cache

and sent to the next memory level, the associated MSHR tracks

the cache miss by temporally storing the requester ID, cache block

address, requested data tag, and other related information until the

data is returned from the lower level. A typical MHA may have
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dozens of MSHR entries (e.g., 32 or 64) and each entry may in turn

have multiple slots (e.g., 4 or 8). An entry is allocated to the primary

miss to a cache line, and the slots within the entry are allocated

to the secondary misses to the same cache line while the primary

miss is pending. The MHA is critical to memory level parallelism,

as no new memory requests can be processed if there is no free

entry or slot available in the MHA.

While the above architecture works well to a certain degree, it

may no longer be sufficient in handling the increasing diverse miss

behaviors in GPU workloads. The main issue with the conventional

array-based MSHRs is that the entire structure is static, in the sense

that every entry has the same number of slots and this number

is fixed after manufacturing. However, it is unlikely that every

cache line has the same number of misses. While some entries are

in high demand for slots, other entries may have multiple slots

being unused. To understand the workload demand in practice

better, we evaluated a number of applications from three widely

used GPU benchmark suites. Results show that the cache misses

in most benchmarks are predominant by either primary misses or

secondary misses. This highlights that the entry/slot utilization in

conventional MSHRs would be poor when running the common

workloads, and that the structure would not perform well for all

the applications due to the diverse miss behaviors. A direct and

naive way to address this issue is to add more entries and slots. This

method not only incurs substantial overhead (e.g., 22.3% overhead

in terms of L2 cache area, as shown later), but also has limited

effectiveness as certain applications may demand over 30 secondary

misses to the same cache line (thus requiring 30 slots per entry)

but only need 2 to 3 entries. It is simply impractical to increase

MSHRs from the typical 4-8 slots per entry to that size. To address

this important problem, innovative solutions are needed to utilize

the MSHR resources smartly.

In this paper, we propose Dynamically Linked MSHR (DL-MSHR),

a novel approach that allocates miss handling resources flexibly and

adaptively to meet the diverse miss behaviors of applications. In DL-

MSHR, entries are formed dynamically from a pool of available slots.

A slot can be assigned as an independent entry for processing a pri-

mary miss, or can be linked after another slot in an existing entry to

increase the capacity of processing secondary misses. The number

of slots that each entry has depends on the frequency of memory

accesses to the corresponding cache line. This approach self-adapts

to primary-miss-predominant applications by forming more entries

with fewer slots, and adapts to secondary-miss-predominant appli-

cations by having fewer entries but more slots per entry. We also

propose four additional optimization techniques to further increase

the efficiency of DL-MSHR. Evaluation results show that, compared

with conventional MSHRs, the proposed DL-MSHR is able to re-

duce the primary- and secondary-miss-induced reservation fails

in MSHRs by 88.1%, improve the MSHR utilization by 53.7%, and
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increase the overall IPC by 19.2% with only 0.6% and 0.1% area over-

head on L1D and L2 cache, respectively. Moreover, DL-MSHR can

complement existing techniques and achieve an additional 26.3%

IPC improvement on top of MRPB (Memory Request Prioritization

Buffers) [10]. The average IPC of DL-MSHR is even 8.0% higher

than the conventional MSHR configured with 4X the amount of

hardware, i.e., doubling the number of entries and doubling the

number of slots per entry.

2 BACKGROUND

Miss handling architecture (MHA) is critical to memory level par-

allelism and system performance, as MHA feeds and tracks con-

current miss requests that are issued to the next level of memory

hierarchy. Over the years, miss handling architecture has been

evolving continuously and has unlocked an increasing amount of

parallelism that can be achieved by cache and memory. This sec-

tion explains several key considerations of MHA that lead to the

explicitly-addressed, MSHR-based MHA design today.

Lockup cache vs. lockup-free cache.When cache was orig-

inally introduced, the associated MHA can handle only one out-

standing miss at a time (i.e., lockup cache). To read a data, the data

address is used to search the cache. A cache hit returns the requested

data right away; whereas a cache miss requires the MHA to first

record the pertinent information of the request and then issue the

request to the next level in the memory hierarchy. Before the data

is back, the cache does not process new misses and is “locked up”.

Writing data is similar (as most cache designs use write-on-allocate

policies), except that the MHA needs to provide a data buffer to

store the new data temporarily before the corresponding cache line

is allocated and available.

To support lockup-free caches, multiple Miss Status Holding Reg-

isters (MSHRs) are added to the MHA to keep track of multiple

outstanding misses concurrently[14]. Each cache miss is allocated

one MSHR entry which records the information of the miss, such

as the requester ID, cache block address, requested data tag, new

data for write-back (in case of writing), etc. Once the requested data

is returned, the data can be forwarded back to the corresponding

requester based on the information retrieved from the MSHR. The

cache can accept new misses from processing cores as long as there

are free MSHRs available.

Primary miss vs. secondary miss. As the smallest unit for

data transferring between two cache levels is a cache line rather

than individual words, additional optimization opportunity exists

in combining multiple data requests to the same cache line. To

exploit this opportunity, cache misses are divided into two types. A

primary miss occurs when the cache line containing the requested

word does not exist in the cache and a new MSHR entry needs to

be allocated. A secondary miss occurs when the requested word

shares the same cache line of an outstanding miss, in which case no

new request needs to be issued to the next level since the requested

cache line is already on the way. Note that the requested word

in the secondary miss could be to a different word in the same

cache line, or to the same word as the primary miss but from a

different requester (e.g., a different core). To accommodate this,

each MSHR entry further consists of several slots to keep track of

individual word requests. An address comparator is associated with

Block 
Addr Slot 1 Slot 2 Slot nComparator

Valid bit Requestor
ID

Format
bits Data buffer

(a) Implicitly addressed MSHR (n=cache line size/word
size)

Block
Addr Slot 1 Slot 2 Slot pComparator

Valid bit Requestor
ID

Format
bits

Offset
bits Data buffer

(b) Explicitly addressed MSHR (p can be smaller than
n)

Figure 1: Implicitly and explicitly addressed MSHRs.

each MSHR entry to check if any incoming cache miss shares the

same block address of the cache line that the MSHR is allocated to.

if yes, a free slot in the matching MSHR entry is be needed; if not,

a free MSHR entry would be needed. The comparison is done in

parallel across all the MSHRs, similar to a fully associative cache.

In this paper, we use the term entry-full to refer to the case where

no free MSHR entry is available, and use merge-full to refer to the

situation where no free slot is available within an MSHR entry.

Implicitly vs. explicitly addressed MSHR. To realize the

functionality of MSHRs in hardware, Kroft proposes an implemen-

tation based on implicitly addressed MSHRs [14]. As depicted in Fig-

ure 1a, in this architecture, an MSHR entry provides a pre-allocated

slot for each addressable word in a cache line. All the slots share

the same block address, but the offset bits within a block (to specify

each word) do not need to be recorded in a slot (i.e., the words in a

block are implicitly addressed by using the position of the slots). If

a particular word in a cache line is requested, the requester ID and

other related information is recorded in the corresponding slot. As

each word in a cache line has exactly one slot, an MSHR entry is

able to track multiple secondary misses, provided that they request

different words in a cache line. However, secondary misses to the

same outstanding word are denied because there is no place to

store more than one copy of tracking information. Although this

design has simple control, having at most one outstanding miss

per word is a very severe limitation, especially in the many-core

era. Moreover, reserving one slot per word may lead to very low

efficiency of MSHR given the large cache line size in contemporary

processors (e.g., 32 words).

To overcome the drawbacks of the above design, Farkas and

Jouppi [6] propose the explicitly addressed MSHR. As illustrated

in 1b, the number of slots, p, in an MSHR entry does not have to

be the same as the number of words in a cache line (p is the same

across all the MSHRs). Instead, every slot is generic and can be

used to track any word in the cache line. Consequently, the offset

of the word needs to be explicitly recorded in the slot. Although

the offset requires additional bits, the achieved savings in the re-

duced slots and the benefits of increased flexibility far outweigh

the overhead, which makes this design the de facto MHA in most

of the current commercial processors including Core i7[4], Xeon

E5[33], and GTX960[23].
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// Kernel in BlackScholesGPU

1: __global__ void BlackScholesGPU(

2: float *d_CallResult, float *d_PutResult,

3: float *d_StockPrice, float *d_OptionStrike,

4: float *d_OptionYears, float Riskfree,

5: float Volatility, int optN 6: ) {

7: int tid = blockDim.x * blockIdx.x + threadIdx.x;

8: int THREAD_N = blockDim.x * gridDim.x;

9: for(int opt = tid; opt < optN; opt += THREAD_N)

10: BlackScholesBodyGPU(

11: d_CallResult[opt],

12: d_PutResult[opt],

13: d_StockPrice[opt],

14: d_OptionStrike[opt],

15: d_OptionYears[opt],

16: Riskfree,

17: Volatility

18: ); }

Figure 2: Blackscholes (primary-miss-predominant).

// Kernel in Aligned Types

1: template<class TData>__global__ void testKernel(

2: TData *d_odata, TData *d_idata, int nE)

3: {

4: int tid = blockDim.x * blockIdx.x + threadIdx.x;

5: int numThreads = blockDim.x * gridDim.x;

6: for(int pos = tid; pos < nE; pos += numThreads)

7: d_odata[pos] = d_idata[pos];

8: }

Figure 3: AlignedType (secondary-miss-predominant).

While the previous discussions mainly focus on L1 cache for

primary and secondary misses, similar situations also exist in L2

cache, but at the granularity of cache lines (instead of words). A

cache line in a shared L2 may be accessed by multiple private L1

caches in different cores, thus requiring a multi-slot L2 MSHR entry

to track these requests. For example, a private L1 may request a

cache line from L2. If the line is not present in the L2, an L2 MSHR

entry is allocated to track this primary miss while the line is being

fetched from the memory. Meanwhile, if another private L1 cache

has a write request to L2 for the same line, this request is allocated

another slot in the above entry (i.e., secondary miss), and the write

data from the write request is temporarily stored in the data buffer

of that slot 1. The explicitly addressed MSHR design also works

more efficiently than the implicit one for L2, as there is no need to

provide a reserved slot for each L1. Note that, if any of the read and

write request results in the replacement of a dirty line, the dirty

line does not need a MSHR slot; instead, it is placed into the evicted

buffer and later written back to the memory.

3 MOTIVATION

The success of the explicitly addressed MSHR design demonstrates

the importance of having an efficient miss handling architecture

for enabling memory-level parallelism. However, this architecture

may no longer be sufficient in handling the increasing diverse

application miss behaviors.

1There can be multiple read and write requests to the same cache line in L2. To ensure
correctness (e.g., consider the sequence ofW1, R1,W2, R2), the write data from different
private L1 cache requests cannot be combined in an L2 MSHR entry, thus requiring
each slot to have a data buffer.

3.1 Diverse Application Cache Miss Behaviors

We first characterize applications by examining whether their pre-

dominant misses are primary or secondary misses. The results can

help to understand the diverse demands on miss handling architec-

ture. While several works have studied GPU workloads in detail, to

our knowledge, no research has examined from the perspective of

cache miss types, as defined below.

Primary-Miss-Predominant Applications. This type of

applications exhibit a high demand for MSHR entries but not the

slots within an entry. As an example, Figure 2 shows the kernel

of the blackScholes benchmark from the NVidia SDK [24] that is

primary-miss-predominant. For this kernel, there are 7 different

floating variables from line 11 to 17 (4 bytes each) that need to be

loaded before further calculation. If running on a GTX750Ti using

all the 640 CUDA cores simultaneously (5 streaming multiproces-

sors (SMs) × 128 cores/SM = 640), up to 140 cache lines (640 × 7

variables × 4 bytes / 128 byte/line = 140, assuming perfect coalesc-

ing) could be requested in a cycle which, theoretically, needs 140

MSHR entries to track the information. Hence, the 32 entries of

MSHRs in GTX750Ti are very easy to cause execution stall. The

primary-miss-predominant applications can significantly benefit

from an increase in the number of MSHR entries.

Secondary-Miss-PredominantApplications.Applications
in this category have a high demand for the slots in MSHR entries

but less so for MSHR entries. Figure 3 shows the kernel of the

alignedTypes benchmark involving array operations. Array ele-

ments are usually stored sequentially in the address space. When

multiple threads are executing this kernel simultaneously, these

threads may likely access the same cache lines with good spatial

locality and high number of secondary misses. Assuming the float-

ing type for the TData template in line 1, there can be up to 128

byte/line / 4 bytes = 32 requests, which greatly exceeds the 8 slots

in each MSHR entry in GTX750Ti. To increase the capacity of hand-

ing secondary misses, more slots have to be added. In the current

MSHR architecture, this is very costly as 1) each slot contains a

data buffer for the possible write miss, and 2) every MSHR entry

has the same number of slots, so even adding one slot per entry

would considerably increase hardware overhead.

We studied a number of applications from the NVidia SDK [24],

Rodinia [2, 3] and Parboil [29] benchmark suites. Figure 4 presents

the breakdown of reservation fails resulted from primary misses

and secondary misses (other sources of RFs account for less than

3%). GPGPU-Sim [1] with a typical configuration (more details in

Section 5) is used to simulate the benchmarks. The figure exhibits

a great diversity, with some applications such as b+tree and bfs

having reservation fails predominately from secondary misses, and

applications such as blackSholes and scan having reservation fails

predominately from primary misses. These results indicates that

a static, one-size-fits-all MSHR architecture may not be the most

efficient design to handle diverse GPU workloads.

To verify the merge-full and entry-full phenomenons in MSHR

are not synthetic issues of the simulator, we have developed a

microbenchmark that tests the MSHR of a recent GPU. Our inten-

tion is not to expose the publicly unavailable MSHR details of real

GPUs, but rather to show that merge-full and entry-full indeed

create performance issues in recent GPUs. There are three kernels
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Figure 4: Breakdown of reservation fail (RF) causes.

Issue Stall Reason
Execution Dependency Memory Dependency
Instruction Fetch Other

(a)Balanced Case (b)Merge-full Case (c)Entry-full Case

Figure 5: Percentage of execution stall reasons.

in this microbenchmark that represent a balanced case, a merge-

full case, and a entry-full case, respectively. Each kernel consists

of 64 blocks with 256 threads per block, totaling 16384 threads.

The balanced case has relatively balanced primary and secondary

misses to cache. In the merge-full case, half of the threads access

the same cache line, which causes a large number of secondary

misses. In the entry-full case, the threads occupy different cache

lines (i.e. primary misses) as much as possible while minimizing

secondary misses. A GTX960 graphics card is employed to execute

the three kernels, and the NVidia Nsight tool [22] is used to collect

the stalling data of the GPU. Figure 5 compares the percentage of

various reasons that cause execution stall of the tested GPU. In the

doughnut chart generated by Nsight, the percentage of stall from

“memory dependency” increases from 25.3% in the balanced case

to around 48% in the merge-full and entry-full cases, highlighting

the severe negative impact of MSHR merge-full and entry-full be-

haviors. This is particularly evident in the merge-full case where

half of the threads access the same cache line. One might expect

that such access pattern would lead to a large number of cache hits

and reduced data stall. However, the limited slots in each MSHR

entry causes frequent merge-full situations and prevents further

data requests from being serviced by the cache and MSHRs. While

the performance impact of other benchmarks may not be as large

as our microbenchmark, the experiment here demonstrates that

the MSHR issue indeed exists in current practice.

3.2 Need for Dynamic Miss Handling

Under current MSHR architecture, addressing diverse application

miss behaviors needs to increase the number of MSHR entries and

slots. Note that both entries and slots need to be increased. Missing

either of the two aspects would result in a class of applications

to suffer from primary miss induced or secondary miss induced

reservation fails. This approach is costly and inefficient for two ma-

jor reasons. First, MSHRs are implemented as content-addressable

memory (CAM). Each MSHR entry has an address comparator, and

all the entries need to be searched in parallel up on a cache miss.

This places a high capacitive load at the output gate of the upstream

address decoders. Our evaluation based on CACTI 6.5 [19] confirms

that the search delay and area cost of MHA rise superlinearly as the

number of entries increases. However, these overhead is relatively

small if the total number of entries is not large (i.e., the negative

effect of superlinear growth becomes substantial only when the

base number is large).

Second and more importantly, each slot contains a data buffer

to temporarily store write-back data in case of a write miss. Thus,

increasing the number of entries and/or slots would substantially

increase the overall area of the MHA. For example, as shown in

Section VI, doubling the number of entries and slots for L2 MSHR

incur an area overhead of 22.3% in terms of L2 cache area, and 33.4%

power overhead. Nevertheless, the performance gains from this are

still very limited. Clearly, directly increasing the size of MSHR is

not a cost-effective solution.

This calls for a flexible and dynamic MSHR design that can utilize

hardware resources smartly. The opportunity comes from the fact

that primary-miss-predominant applications need a large number

of entries, but only few slots within each entry is occupied. Similarly,

secondary-miss-predominant applications have high demand for

the slots within certain entries, but many other MSHR entries (and

their slots) may still be free. This opportunity is exploited in the

approach proposed in this paper.

3.3 Other Related Work

GPU architecture has been improved from various aspects (e.g.,

[7, 11, 13, 15, 25, 30] and many others). However, only a few works

have targeted the efficiency of miss handling architecture. To reduce

cache look-up time and increase bandwidth, Tuck et al. [31] propose

a hierarchical MHA, where a small MSHR file is provided at each

cache bank to process the majority of secondary cache misses,

and a large MSHR file that is shared by all the banks to handle

long latency misses. In addition, Jahre et al. [9] propose to shrink

the miss handling bandwidth for a specific core that delays the

execution speed of other cores, thereby achieving a higher overall

speedup. Neither of the above two designs can dynamically adjust

the number of MSHR entries or slots that can be self-configured

to best suit the needs of applications as proposed in this work.

Loh[18] proposes Vector Bloom Filter (VBF) that can provide faster

access for large MHA and can dynamically shrink MSHR capacity.

However, VBF does not explore the opportunity in utilizing the

unused slots in an entry that is already allocated to a primary

miss, whereas DL-MSHR utilizes these slots by decomposing each

entry into slots and dynamically linking them. In evaluation, we

compare DL-MSHR with a perfect VBF where the MHA access time

is one cycle regardless of the MHA size. In addition, Power et al.

[26] propose a region-based coherence to reduce MSHR entries in

the coherence directory in heterogeneous systems, and Qureshi et

al. [27] propose a linked structure in V-Way cache to reduce the
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unbalanced set access problem. Both works are related but have

very different contexts than this work.

Also closely related to MHA are reservation fails, which may

occur due to several reasons such as MSHR entry-full, MSHRmerge-

full, miss queue full, cache reservation full etc[12]. If the data re-

quest at the head of the request buffer to cache encounters a reser-

vation fail, subsequent requests will be blocked even though they

could have been processed in three cases: 1) the reservation fail is

caused by entry-full with no available MSHR entry to track this

primary miss, but subsequent requests could have been merged

into other allocated MSHR entries (i.e., secondary misses); 2) the

reservation fail is caused by merge-full with no slot to accept this

secondary miss in a particular MSHR entry, but subsequent requests

could have been assigned with other available MSHR entries; and

3) the blocked subsequent requests could have hit in the cache and

thus do not need MSHRs.

Several works have been proposed to address reservation fails in

some degree. Jia et al.[10] and Dai et al.[5] both use resource-aware

cache bypassing techniques to bypass memory requests when they

suffer stall in the cache. Xie et al.[34, 35] propose a compiler level

cache bypassing technique. The compiler analyzes the cache utiliza-

tion of a program based on the developed metric, and then selects

certain instructions to access or bypass cache. While these cache

bypassing techniques are effective in avoiding reservation fails

when they are imminent, they do not explore the opportunity in

improving miss handling architecture to reduce the likelihood of

reservation fails in the first place. Another technique MRPB[10] is

also proposed to actively reorder the requests into a cache-friendly

order before accessing L1D cache and the associated MSHRs. Nev-

ertheless, the effectiveness of MRPB is greatly limited by the “static”

nature of MSHRs, e.g., whenMSHR is entry-full (but not all the slots

in the entries are occupied), no primary miss can be accepted even if

these primary miss requests are perfectly reordered. Our proposed

scheme addresses this issue by dynamically forming MSHR entries

and slots from a pool of unified resources, thus complementing

MRPB in a different way as shown in evaluation.

4 DYNAMICALLY LINKED MSHR

4.1 The Basic Idea

We propose Dynamically Linked MSHR (DL-MSHR), a novel ap-

proach that allocates miss handling resources flexibly and adap-

tively. The basic idea is to decouple the static binding between

a conventional MSHR entry and its constituting slots. Each DL-

MSHR entry is dynamically formed from a pool of available slots.

The adaptivity of DL-MSHRs is reflected in two aspects. Across

applications, more entries with fewer slots are formed to meet the

demand of primary-miss-predominant applications, whereas fewer

entries but more slots per entry are formed for secondary-miss-

predominant applications. Within an application, the number of

slots that each entry has can also adapt to the frequency (demand)

of memory accesses to the corresponding cache line. This flexibility

allows DL-MSHRs to satisfy some extreme primary and secondary

miss demands without the need for more physical entries or slots.

Figure 6 shows howDL-MSHRs integrate with other components

of the system. At the high level, an array of DL-MSHRs replaces

the conventional MSHR array to track multiple outstanding misses.

Core

L1 or L2 Cache

DL-
MSHR

Tag & 
Control

Input
stack

Memory
Receiver

Memory
Requestor

se
le

ct
or

DAU

Figure 6: Overview of dynamically linked MSHRs (the new

and modified components are highlighted).

A Dynamic Allocation Unit (DAU) is developed to control the op-

erations of DL-MSHRs. The DAU is placed between the original

Tag & Control unit and the DL-MSHR array. Upon a read or write

request from the processing core or from the previous level in the

memory hierarchy, the Tag & Control unit checks if the request

hits in the cache. If not, the Tag & Control tries to insert the re-

quest to an MSHR and, if successfully (receiving acknowledgement

from the MSHR), issues the request to the next memory level. With

DL-MSHR, the DAU intercepts the signals from the Tag & Control

and inserts the request to a dynamically linked DL-MSHR slot.

4.2 Challenges

While DL-MSHR conceptually is a simple but attractive approach,

implementing miss handling entries that are flexible and adaptive

faces several major challenges. First, unlike the linked list in data

structure at the software level, where operations can be easily

specified in high-level programming language and executed by a

general-purpose processor, here dynamically linking slots needs to

be implemented at the hardware level and controlled by a dedicated,

low cost logic unit to handle various cases, which is not a straight-

forward task. Second, since MSHR slots are dynamically formed,

additional time may be needed in finding available slots and in

locating the position to link the slots. Thus, techniques and opti-

mizations are needed to minimize the delay and power overhead of

DL-MSHR, as well as to avoid frequent linking operations. Third,

the DL-MSHR array and DAU should be designed in a way that is

transparent to other components. In other words, all the original

signals to and from the box with dashed boarder in Figure 6 should

be exactly the same as in the conventional MSHR architecture. This

avoids changes and verification efforts to other components, and

helps to integrate the proposed scheme in commercial GPUs.

In the rest of this section, we present the detailed design of DL-

MSHR, addressing what specific architecture changes are needed

to link the slots, how the resources are organized physically and

connected logically, what steps are involved in processing primary

and secondary misses, when to allocate and free entries and slots,

how the DAU is realized using finite state machines, along with

four optimization techniques to further improve the efficiency of

DL-MSHRs.

4.3 DL-MSHRs

Figure 6 illustrates the conventional explicitly addressed MSHRs

and the proposed DL-MSHRs. All the slots in a row share the same

block address and a comparator (denoted as “C”), and each slot

includes the offset bits of the read/write data, a data buffer, and
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Figure 7: Illustration of conventional MSHRs and dynamically linked MSHRs (DL-MSHRs).

other related miss tracking information. Figure 7a shows a conven-

tional MSHR architecture with 4 entries, each having 4 slots. As a

result, if there are more than 4 concurrent primary misses or more

than 3 concurrent secondary misses after any primary miss, there

will be reservation fails due to MSHR entry-full and merge-full,

respectively. However, it is unlikely that every cache line has the

same number of outstanding secondary misses. Hence, many slots

may still be available even in case of reservation fails.

To utilize the slot resource more efficiently, the proposed scheme

decomposes the static entries into a pool of slots. Several slots form

a slot set as the basic element for dynamic allocation (two slots in

the example of Figure 7b). Managing resource at the granularity

of sets rather than individual slots adds another level of flexibility

and helps to reduce slot linking operations as discussed later. A

slot set can be dynamically allocated as an independent entry for

processing a primary miss, or can be linked after another slot set in

an existing entry to increase the capacity of processing secondary

misses, forming a “super-entry”.

Figure 7b shows an example of how 8 slot sets are physically

organized in the proposed DL-MSHR architecture, and Figure 7c

shows one possible logical state at runtime. In this logical state,

there are 5 super-entries or DL-MSHRs (we use the term super-entry

and DL-MSHR interchangeably in this paper), and the super-entries

have varying number of slots. Since there are 8 slot sets with 16

slots in total, maximally this DL-MSHR structure can process up to

8 outstanding primary misses concurrently if all the slot sets are

assigned as entries, or handle up to 15 concurrent secondary misses

after the primary miss if all the slot sets are linked together as

one super-entry. This is significantly more than what conventional

MSHRs in Figure 7a can handle.

The dynamic allocation is self-adaptive and does not require

external interference to dictate when to link or delink. When a

super-entry is full and a new secondary miss comes, it is the time

to link a free slot set if one is available. When the requested data

is returned from lower level and forwarded to the requesters, it is

the time to break the corresponding super-entry and free all its slot

sets. An internal control unit (i.e., DAU) is still needed to initiate

the operations, and several extra bits are needed in each slot set:

Head bit (H ): this bit indicates whether the slot set is the first set

in a super-entry to handle a primary miss.

Linked bit (L): this bit indicates if there is another slot set attached

to the current one to handle more secondary misses.

Pointer bits (P): these bits (e.g., 3 bits in the example of Figure 7c)

work together with the L bit to specify the ID of the next linked

set. This allows the control unit to find the physical location of the

attached set.

Set free bit (S_free): this bit is set to 1 if all the slots in the current

set are unoccupied, so the slot set can be dynamically allocated by

the control unit.

Set full bit (S_full): this bit is set to 1 if all the slots in the current

set of slots are occupied. If another secondary miss comes, a new

slot set needs to be linked to the current set. The S_free and S_full

bits are not mutually exclusive, e.g., when a slot set is partially

occupied, both S_free and S_full bits are 0.

Lastly, a counter nFreeSet is maintained to track the number of

free slot sets in the entire DL-MSHR structure. The counter is simply

decremented or incremented whenever the control unit allocates or

frees a slot set. Using the counter is a nice solution to avoid ANDing

the S_free bit of every slot set, which would otherwise be slow. The

above extra bits and the counter are all very small (no more than a

few bits), which has minimal overhead compared with the slot set.

4.4 Operations

With the above architectural changes, we describe the three main

operations of DL-MSHRs as follows.

Handling Primary Misses. When a miss is detected by the

Tag & Control unit (TCU) in the conventional MSHRs, a search

signal is sent to the comparator array to find whether there is a

match in the MSHRs. The same signal is now sent to the DL-MSHRs.

The block address included in the miss request is compared with

the block address in each DL-MSHR. If no match is found (i.e., a

primary miss), the nFreeSet counter is checked to see if any free

slot set is available. If yes, an allocation signal is passed on to the

DAU. A free slot set is selected to serve as a new super-entry that

keeps track of the primary miss. The head bit is asserted to indicate

the current set is an independent entry. The S_free bit is set to 0

signifying that this entry is currently occupied. The cache block

address, offset address and requester ID are recorded in the first

slot of the current set, as the slot set may consist of multiple slots.

If this primary miss is a write request, the data is written into
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the data buffer (applicable in the write-back cache). If the above

nFreeSet counter is 0, it means that the entire DL-MSHR structure

has no available slot set to handle any new primary miss. This

memory request is stalled until a slot set becomes free, as indicated

by nFreeSet.

Handling Secondary Misses.When the TCU detects a match

in the conventional MSHRs, it generates a merge signal to the

matching MSHR. This merge signal is now intercepted by the DAU.

The DAU tries to merge the request into the matching DL-MSHR by

storing the request in a free slot in the last slot set (i.e., tail slot set)

of that super-entry. All the preceding slot sets should have been

fully occupied. To locate the tail slot set, the DAU searches from

the head slot set and follows the linked bit (L) and pointer bits (P)

set by set until reaching the tail slot set, whose L bit should be 0. In

the tail slot set, there are 3 possible cases:

(a) At least one slot is free (i.e., S_full is 0). In this case, the infor-

mation of the miss request is recorded in the first available slot in

the set. The DAU then modifies the S_full bit based on whether

the current slot set is full after accepting this secondary miss. For a

write miss, the DAU also writes the data into the data buffer.

(b) No slot is available in the tail set, but nFreeSet > 0. In this case,

the DAU selects a free slot set to be linked as the new tail set. The

old tail set stores the ID of the new tail set in the P bits and as-

serts the L bit to record the linking information. The new tail set

deasserts its head bit, stores the miss request in the first slot (which

should be free), and deasserts the the S_free bit.

(c) No slot is available in the tail set, and nFreeSet is also 0. In this

case, no free slot set is available to be dynamically linked in the

entire DL-MSHR structure. The miss request has to be stalled until

a slot set becomes free, and then goes into the above case (b).

Deallocation of DL-MSHR. A super-entry and all of its slot

sets are deallocated and recycled when the requested data is re-

turned from lower memory levels and the data is forwarded back

to the requesters. To deallocate, the DAU resets the H, L, P, S_free

and S_full bits of all the slot sets in the super-entry. The nFreeSet

counter is also incremented by the number of newly freed slot sets.

Notice that, although the super-entry is deallocated, the data is still

in the cache and subsequent accesses will result in cache hits.

4.5 Dynamic Allocation Unit (DAU)

A major task in implementing DL-MSHR is how to design a simple

yet comprehensive control unit that can respond to various scenar-

ios correctly and promptly. In this subsection, we present the design

details of the Dynamic Allocation Unit (DAU), which serves as an

interfacing controller between the original Tag & Control unit and

the DL-MSHR arrays. The key component in the DAU is a built-in

finite state machine that controls various operations of slot sets.

Figure 8 shows the finite state machine for a DL-MSHR example

with two slots in a set2. Following state diagram conventions, the

signals on the arrows are inputs and the signals inside the circles

are outputs.

There are two main state-transfer paths in Figure 8. The lower

path is activated by ReqH and the upper path is activated by ReqA.

2The minor states for error detection and fault control are omitted in this diagram for
clarity, but they are all implemented. Additionally, the same state S_0 is only replicated
in the figure on both sides to avoid long arrows.
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Figure 8: The finite statemachine used to implement the Dy-

namic Allocation Unit (assuming 2 slots per set).

The ReqH is a signal that requests a free slot in a head set; if the set

is not already a head set, the signal first marks the set as head and

then requests a slot. Similarly, the ReqA is a signal that requests a

free slot in an attached set; if the set is not already an attached set,

the signal first transfers the state of the set to “attached”.

The lower path containing S_1 to S_5 depicts the state-transfer

when a free slot set becomes a head set. When S_0 receives ReqH

which results from a cache miss, this path is activated and the slot

set becomes a head set. Hence, the Head bit is asserted, and the

S_free bit is deasserted, as shown inside the circle of S_1. The S_1

state implies that the first slot of the current set has recorded the

information of a primary miss. At this point, if a new ReqH arrives

requesting another free slot, the state is transferred to S_2 and a

secondary miss is recorded in the second slot of the current set.

With a total of 2 free slots per set, the S_full signal should now

be asserted. As more secondary misses continue to arrive at the

current entry, the DAU checks the nFreeSet counter to see if there

is any available slot set. If a free slot set is found, the state transfers

to S_3, and the information of the linked set is recorded. During

this state, a ReqA signal is sent out that marks the newly found set

as “attached” (i.e., activating the upper path for that set, discussed

shortly). However, if nFreeSet is 0, the state is directly transferred to

S_4 which generates a reservation fail (RF ) signal. S_4 may transfer

back to S_3 if a slot set becomes free, as indicated by nFreeSet > 0.

Later, when the requested data is returned from the lower memory

hierarchy, a RET signal is generated. This signal is used to release

the occupied slots. This includes the transfer from both S_3 and

S_4 to S_5. After the entire set is released, the state goes back to

the initial state S_0.

Likewise, when S_0 receives ReqA that requests the set to attach

to another set, the upper path is activated. The ReqA, RET and

nFreeSet are mainly responsible for driving the state transfer. To

signify that the current set is used for holding secondary misses,

the head bit is set to 0, and the S_free is also deasserted to denote

an occupied slot, as shown in S_6. As more secondary misses arrive,

the S_full is asserted, leading to S_7. Depending on whether a free

slot set is available (i.e., if nFreeSet > 0), the state transfers to S_8

or S_9. Later when the data is returned, the RET signal drives the

state to S_10 and the initial state.
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Finally, for deallocation, when the state transfers to S_0, a S_free

signal is asserted which serves as the external free signal S_free_-

EXT to the preceding slot set which is either another “attached” set

(from S_8 to S_10) or a “head” set (from S_3 to S_5).

While the prior explanation of how DAU works is detailed, im-

plementing the state diagram in Verilog HDL results in almost

negligible hardware overhead of the control logic, as shown in

evaluation (Section 6).

4.6 Additional Optimizations

Optimization 1: Group slots into sets. The above descrip-
tion of DL-MSHR started with grouped slots without too much

explanation. In fact, this optimization has several benefits. First,

grouping slots into one set can reduce hardware overhead, as most

of the extra bits and resources in DL-MSHR are at the per set gran-

ularity. Second, grouping increases the chance of having a free

slot when a secondary miss occurs, thus reducing the frequency

of linking another slot set and the associated delay and power

consumption. Third, grouping reduces the number of additional

comparators needed by DL-MSHR. As each slot set can be used as

a separate MSHR entry, the total number of comparators in DL-

MSHR is equal to the number of slot sets. For example, in Figure

7b, with 2 slots per set, physically DL-MSHR needs 8 comparators.

If there are 4 slots per set, the number of comparators would be the

same as that of Figure 7a. Note that, even in this case, DL-MSHR is

still better than Figure 7a because the slot sets can be dynamically

linked.

Having more slots in a set increases the benefits of the above

three aspects, but also reduces adaptivity. Our empirical study

shows that having two slots per set offers a much better trade-

off than other configurations by a large margin. Hence, two slots

per set is used in this paper as the basic linking unit. In terms of the

impact on the critical path, we have used Synopsys design compiler

and CACTI 6.5 [19] to evaluate the CAM searching latency of dif-

ferent comparator configurations. A typical 32-entry MSHR design

needs 0.2ns to complete the searching of 32 comparators (parallel

searching but serial signal driving). When using 64 comparators

such as in the 2-slot per set configuration, the searching time only

increases slightly to 0.22ns, which is fast enough to match up with

the frequency of most commercial GPUs.

Optimization 2: Disable unused comparators. Although
physically each slot set has a comparator, the comparator is not

used when the set is linked after another one. For example, logically

only 5 comparators are active in Figure 7c. Therefore, the unused

comparators can be disabled to avoid searching. To realize this,

we can reuse the Head bit as a double-function bit. A deasserted

Head bit in each slot set indicates that this set is either unused or

attached to other set. In both cases, the associated comparator can

be safely disabled by using the Head bit as a gated enabling signal.

With this optimization, searching through the DL-MSHR arrays

still takes roughly the same time (as all the Head bits still need to

be searched), but the comparators of unused or attached sets are

not activated, thus avoiding the associated power.

Optimization 3: Locate tail set faster. During the operation
to link a slot set to an existing super-entry, the DAU needs to locate

the tail slot set. If the super-entry contains many slot sets, this

may take several cycles. To avoid this delay, an extra pointer that

stores the ID of the current tail slot set can be added in the head

set in a super-entry. The pointer is updated when a free slot set

is linked as the new slot set, and is reset when the super-entry is

deallocated. By adding this pointer, the latency to locate the tail

set can be reduced to one cycle. We have evaluated this optimiza-

tion, and simulation results show that the technique does improve

performance, although the improvement is not large, around 0.5%

IPC increase when averaged over the benchmarks. This is mainly

because: 1) super-entries with a large number of linked slot sets are

not common, 2) locating the tail set is needed only when linking

slot sets, and 3) the latency can be partially hidden by multiple

outstanding misses.

Optimization 4: Reserve head sets. We also augment the

proposed DL-MSHR with the ability to reserve some head slot sets.

In DL-MSHR, it is possible that all the slot sets are linked together

as one huge super-entry to satisfy the need of a particular cache line

with an unusual number of secondary misses. While this is intended

and beneficial in some cases, it is rare that the entire many-core

processor has only one primary miss. This can be easily addressed

by setting the Head bit of some sets to always be 1 to prevent these

sets from being attached to other slot sets. In our design, half of

the slot sets are simply reserved to process primary misses, and the

other half can be freely linked to other sets. Future work can be

done along this interesting line to explore other configurations.

5 EVALUATION METHODOLOGY

We apply the proposed DL-MSHR to both L1D cache and L2 cache

and implement in the cycle-accurate simulator GPGPU-Sim 3.2.2 [1].

Key parameters are listed in Table2. The L1D and L2 MSHR sizes are

typical and in line with existing literature and products. Note that

32 entries are per SM for L1D and per bank for L2, so the GPU has

thousands of MSHR entries as a whole. Different MSHR sizes (up

to 256×32) are also evaluated to demonstrate the cost-effectiveness

of DL-MSHR. The main evaluation assumes GTO warp scheduling

policy, and other scheduling policies are also tested. GPUWattch

[16] is employed to assess energy consumption.

A wide range of benchmarks from Rodinia [2], Parboil [29], and

Nvidia GPU Computing SDK [24] are evaluated that include both

compute and memory-intensive ones. Table 1 lists the details of

the benchmarks. All the benchmarks are run to the end of their

execution. It is important to note that memory coalescing in the

SMs is already employed, so our evaluation methodology does not

artificially increase the number of secondary misses to the cache.

To evaluate hardware cost, we follow previous works (e.g. [10],

[17], [31]) to use CACTI [19] to evaluate the ”standard” parts of

(DL-)MSHR. The data lines are stored in SRAM whereas the CAM

structure is stored in flip-flops. All the new components such as

the finite-state-machine in DAU and additional bits and control

circuits are fully implemented in Verilog HDL and synthesized

using Synopsys Design Compiler under NanGate FreePDK 45nm

cell library [20] for more accurate area and power evaluation.

We compare the following 6 schemes: (1) Baseline: the baseline

with conventional MSHRs shown in Table 2; (2) 2X_Entry: dou-

bling the number of MSHR entries of the Baseline (both L1D and

L2); (3) 2X_Entry+2X_Slot: doubling the number of entries and
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Table 1: Evaluated benchmarks.

Benchmarks Abbre. Ref Benchmarks Abbre. Ref
Backprop BP [2] Transpose TP [24]

Bfs BFS [2] Aligned Types AT [24]
B+tree B+T [2] AsyncAPI AA [24]
Cfd CFD [2] BlackSchole BS [24]

Dwt2d DW [2] BinomialOptions BO [24]
Heartwall HW [2] ConvolutionSeparable CS [24]
Hybridsort HB [2] FastWalshTransform FWT [24]

Nw NW [2] Merge Sort MS [24]
Srad SRA [2] QR Generator QG [24]

StreamCluster SC [2] Radix Sort Thrust RST [24]
Cutcp CUT [29] Reduction RED [24]
Histo HIS [29] ScalarProd SP [24]
Lbm LBM [29] Scan SCN [24]
Stencil STC [29] SobolQRNG SQ [24]
Sgemm SG [29] Sorting Network SN [24]

Table 2: Simulator configuration.

# of SMs 28
Per-SM limit 48 warps, 8 CTAs
# of Mem partitions 8
L1D cache 16KB, 32-set, 4-way

local write-back
global write-through
32×8 MSHRs per SM
(32 entries, 8 slots/entry)

L2 cache 8×128 KB, 64-set, 16-way
allocate-on-miss, write-back
32×4 MSHRs per bank
(32 entries, 4 slots/entry)

DRAM FR-FCFS scheduler
GDDR5, 16 banks
peak bandwidth 345.6GB/s

SM/L2/DRAM clock 1137/1137/2700 MHz
Warp scheduler GTO, LRR, Two-Level, SWL
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Figure 9: Performance comparison over the baseline architecture (normalized to the Baseline).

the number of slots of the baseline, i.e., 4X total slots as the Base-

line; (4) DL-MSHR: the proposed DL-MSHR with the same total

number of slots as the Baseline; (5) MRPB: a recent technique that

reduces reservation fails by using Memory Request Prioritization

Buffers to reorder memory requests in L1D cache and bypassing

the cache for selected requests. Note that the prioritization sig-

nature used in MRPB is designed specifically for L1D and cannot

be applied directly to L2. Also, the MRPB compared here includes

both reorder and cache bypassing to improve its performance. (6)

DL-MSHR+MRPB: applying DL-MSHR on top of MRPB to show

that they exploit different opportunities and are complementary.

6 RESULTS AND ANALYSIS

6.1 Impact on Performance

Figure 9 compares the overall IPC improvement of different schemes

over the baseline structure. Here the proposed DL-MSHR is applied

to both L1D and L2 cache, and separate results are present in Sec-

tion 6.3. Compared with the Baseline, when the number of entries

is doubled, 2X_Entry improves the performance by 8.0% on aver-

age. When both entries and slots are doubled, 2X_Entry+2X_Slot

improves the average performance by 14.5%. This shows that in-

creasing the number of entries and/or slots can help to relieve some

of the pressure on conventional MSHRs. However, some bench-

marks such as CS and DW achieve IPC improvement only when

entries are doubled, whereas some benchmarks such as B+T and BP

gain performance only when slots are also doubled. These results

are in line with our previous analysis that adding more entries or

slots does not work well for all the benchmarks. In contrast, the

number of entries and slots in DL-MSHR are dynamically deter-

mined based on the cache access patterns of different benchmarks.

As a result, the proposed DL-MSHR scheme achieves the best per-

formance among the first four schemes, with an average of 19.2%

IPC improvement over the baseline architecture.

For AT and SC, they both benefit greatly from memory optimiza-

tions as AT ’s kernel mostly consists of memory accesses and SC’s

access pattern has very low reuse. However, 2X_Entry+2X_Slot

does not improve much on SC because the burst secondary misses

in SC demand dozens of slots with an entry, which the 2X Slots help

marginally. In comparison, DL-MSHR is flexible and can attach up

to 64 slots in an entry, thus meeting SC’s demand nicely. It is impor-

tant to note that the above average IPC improvement is calculated

based on geometric mean, so the performance improvement is not

just because of a few very high bars. For example, among the 30

benchmarks in Figure 9, DL-MSHR has around 20% performance

improvement for 8 benchmarks, with over 10% improvement for

an additional 9 benchmarks. It is also worth mentioning that the

average IPC of DL-MSHR is even 8.0% higher than that of 2X_En-

try+2X_Slot which has 4X the number of total slots as DL-MSHR.

This highlights the effectiveness and benefits of offering flexible

resource allocation in DL-MSHR.

The MRPB compared in the evaluation also improves the geomet-

ric mean of IPC by 6.5%, showing that reordering memory requests

and selectively bypassing cache help to reduce stalls when MSHRs

are heavily used3. However, it does not help to balance the uneven

slot utilization across different entries, and many resources are

still idle even when entry-full or merge-full happens. This issue is

addressed by employing the dynamically linked MSHRs. Therefore,

the proposed DL-MSHR can be used to complement MRPB, and the

3The performance gain of MRPB here is different from the original paper as we also
used Parboil and NVidia GPU Computing SDK benchmarks.
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resulting DL-MSHR+MRPB improves the IPC by 26.3%, on average,

compared with the Baseline.

6.2 Reducing Reservation Fails

To provide more insights of the above performance impact, Figure

10 compares the number of reservation fails (RFs) normalized to

the Baseline (the numbers also include RFs from other sources

which accounts for less than 3% in the evaluated benchmarks). On

average, doubling the number of entries (2X_Entry) reduces the

RFs by 68.3%, and doubling the number of slots on top of this (2X_-

Entry+2X_Slot) decreases the RFs by 89.2%. In comparison, with

the same number of slots as the Baseline, the proposed DL-MSHR

can reduce the RFs by 88.1%, and is only slightly less than 2X_-

Entry+2X_Slot that has 4X the number of slots. It is interesting to

see that DL-MSHR has a slightly smaller RF reduction but better

IPC improvement than 2X_Entry+2X_Slot. The reason is that, the

reduction in RFs is not proportional to increase overall performance,

and varies among applications. For example, in the LBM benchmark,

2X_Entry+2X_Slot reduces 46.2% of the RFs and achieves 31.5% IPC

improvement; whereas in BP, the same scheme reduces 64.2% of

the RFs, but only increases IPC by 6.3%. These results indicate that

the self-adaptive nature of DL-MSHR does not blindly optimize for

the overall RF reduction, but rather fine-tunes the number of slots

at the granularity of each entry to meet the need of primary and

secondary misses at any specific time during execution.

Figure 10 also shows that MRPB does not directly reduce the

number of RFs, which is expected as MRPB is not designed for that

purpose. However, MRPB can help DL-MSHR to further bring down

the number of RFs. This is shown in the last bar where RFs are

reduced by 93.2%, on average, compared with the Baseline.

The large reduction of RF in DL-MSHR can be mainly attributed

to the increase in MSRH utilization. Compared with the conven-

tional MSHR, the proposed DL-MSHR improves MSHR utilization

(calculated on a per slot basis) by 53.7% on average. The increase

has been observed for every benchmark, although individual results

are omitted here due to space limitation.

6.3 GPU Architecture Variation

In this subsection, we evaluate the impact of several GPU settings

that may be different across GPU generations.

Closed L1 Data Cache. In some recent Maxwell and Pascal

based GPUs, the L1D cache are closed (disabled) by default. To

evaluate its impact, we disable L1D cache and apply DL-MSHR

only to L2 cache. Figure 11 compares the performance. MRPB is

no longer shown as it works on L1D. 2X_Entry, 2X_Entry+2X_Slot

and DL-MSHR improve the Baseline IPC by 8.9%, 12.1% and 15.5%

on average, respectively. Comparing Figure 9 and Figure 11, we can

see that the benefits of DL-MSHR may come from both L1D cache

and L2 cache, depending on memory access patterns:

(1) when memory requests from the L1D cache of different SMs

converge into memory partitions (where L2 caches locate), the DL-

MSHR in L2 brings majority of the benefits, e.g., for AA and FWT,

disabling L1D cache only loses 0.2% IPC improvement;

(2) when there are many secondary misses in L1D but the re-

quests for L2 does not exceed the capacity of MSHR in the L2 cache,

the benefits mostly come from the DL-MSHR in L1D. For example,

B+T gets 14.1% performance improvement when L1D is enabled,

but the improvement drops to 3.4% when L1D is disabled;

(3) Some applications place pressure on both L1D and L2, and the

DL-MSHR in both caches can help, e.g., for AT, DL-MSHR improves

performance by 228.0% with L2 only, and achieves an additional

140.6% improvement when also applied to L1D.
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Warp Scheduling Policies. In addition to closed L1D, warp

scheduling policies may also vary a lot for different GPUs. Figure 12

compares the average IPC of benchmarks without DL-MSHR (first

bar) and with DL-MSHR (second bar) for GTO, LRR, Two-level [21]

and SWL-best [28]. We use SWL with the best static warp limiting

numbers (SWL-best) to represent the oracle case for CCWS [28],

OAWS [32]. As can be seen from the figure, different schedulers

have some but limited impact on the effectiveness of DL-MSHR. In

general, these and other schedulers can change the scheduled order

and number of warps. This affects data locality and intensity to

the cache which, in turn, change the hit and miss numbers. As our

proposed scheme enhances miss handling, reduced cache misses

may reduce the improvement of DL-MSHR. Nevertheless, cache

misses are unavoidable even with the perfect warp scheduler, and

warp scheduling does not help much in reducing reservation fails

and increasing MSHR utilization. Thus, DL-MSHR consistently

achieves sizable improvement under different warp schedulers,

from 14.3% in SWL to 16.4% in LRR.

Different MSHR Sizes. While the MSHR sizes of L1D and L2

in our baseline are in line with prior work[10, 17], Figure 13 com-

pares the effectiveness of DL-MSHR against other MSHR sizes. We

assume 1-cycle access delay to all the conventional MSHR designs

regardless of their sizes (thus representing the upper bound of VBF

[18] or any other technique that reduces the access delay for large

MSHRs); whereas DL-MSHR has 2-cycle access delay due to the

access of super-entry and potentially linking of a new set (which is

one cycle with the help of the tail set pointer, although this does not

happen on every access). Hence, the comparison is slightly favored

towards conventional MSHR designs. As shown in the figure, DL-

MSHR with similar resource as Baseline is able to achieve nearly

the same performance improvement as 8X_Entry+8X_Slot that has

64X resource of the Baseline, with an average IPC improvement

of 16.2% vs. 16.4%. This indicates that the proposed DL-MSHR can

be a cost-effective solution to realize very large MSHRs that may

otherwise be needed in future GPUs.

Table 3: Area and Power of different MHA schemes.

L1D: non-MHA area 0.11mm2, non-MHA power 42.43mW

Configuration MHA
Area(mm2)

MHA
Overhead

MHA
Power(mW)

MHA
Overhead

Baseline 0.00386 3.51% 3.75 8.84%
2X_Entry 0.00739 6.72% 5.67 13.4%
2X_Entry+
2X_Slot

0.0101 9.18% 7.20 17.0%

8X_Entry+
8X_Slot

0.120 110% 57.3 135%

DL-MSHR 0.00449 4.08% 4.30 10.1%
MRPB 0.0126 11.5% 15.2 35.9%

L2: non-MHA area 0.97mm2, non-MHA power 343.28mW

Baseline 0.0601 6.19% 35.3 10.3%
2X_Entry 0.114 11.7% 63.9 18.6%
2X_Entry+
2X_Slot

0.216 22.3% 114 33.4%

8X_Entry+
8X_Slot

3.18 328% 1500 437%

DL-MSHR 0.0611 6.30% 36.1 10.5%

6.4 Area and Power Overhead

Table III summarizes the area and power overhead of different

schemes. The results are obtained from Cacti 6.5 and Synopsys

Design Compiler. The additional overhead of DL-MSHR over con-

ventional MSHR comes from the extra status bits (head bit, linked

bit, pointer bits, set free and full bits), additional comparators and

block address fields, a free slot set counter, and the DAU control

unit. The overhead of MRPB is mainly from the reorder buffers and

related control logics.

To understand the relative impact of hardware cost on the cache

subsystem, we put the area and power of the non-MHA part (i.e.,

the regular tag and data part) of L1D and L2 on top of each table

section, whereas the numbers in the main table refer to the MHA

part (i.e., MSHRs, comparators, controls, etc.). For instance, the

MHA of Baseline in L2 incurs 0.0601mm2, which is equivalent to

6.19% of the non-MHA part of L2 area. As can be seen, the area and

power overhead of directly increasing MSHR sizes quickly becomes

substantial, accounting for a significant percentage of regular cache

(e.g., 2X_Entry+2X_Slot has 22.3% of L2 area). In comparison, the

area and power of the proposed DL-MSHR is very close to the MHA

part of Baseline, e.g., within around 0.56% area of Baseline for L1D

and within around 0.11% area of Baseline for L2. When taking the

previous performance results into consideration, it can be seen that,

compared with other optimization schemes, DL-MSHR has higher

performance and lower area and power overhead.

6.5 Impact on Energy

Due to the small hardware overhead, DL-MSHR has minimal impact

on the power consumption of GPUs. Therefore, the energy con-

sumption is mainly reduced because of the shorter execution time

for reduced static energy. GPUWattch results show that, compared

with the Baseline, the proposed DL-MSHR achieves an overall GPU

energy savings of 15.7% on average. In comparison, 2X_Entry, 2X_-

Entry+2X_Slot, and MRPB reduce the energy consumption by 8.7%,

1.43% and 5.1%, respectively. It is also interesting to see that, com-

pared with 2X_Entry, the 2X_Entry+2X_Slot consumes more total

energy even though it has shorter execution time. This is because

providing additional MSHR resources in 2X_Entry+2X_Slot taxes

on the static energy, which illustrates from the energy perspective

that naively adding MSHR resources is not an ideal option.

7 CONCLUSION

Contemporary GPUs have an increasing demand for higher mem-

ory level parallelism. Consequently, the miss handling architecture

must be designed to efficiently track a large number of outstanding

memory requests concurrently. In this paper, we propose a dynam-

ically linked MSHR (DL-MSHR) architecture, which forms MSHR

entries dynamically to adapt to application primary and secondary

miss behaviors. Evaluation shows significant reduction in reser-

vation fails and large improvement in overall performance, while

incurring much less area and power overhead than the alternatives.

These results demonstrate the viability and potential benefits of

dynamic MSHR structures.

8 ACKNOWLEDGMENTS

We sincerely thank the reviewers for their helpful comments and

suggestions. This research was supported, in part, by the National

Science Foundation grants #1566637, #1619456, #1619472 and #1750047.



ICS ’19, June 26–28, 2019, Phoenix, AZ, USA Y. Gu et al.

REFERENCES
[1] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.

2009. Analyzing CUDA workloads using a detailed GPU simulator. In IEEE Intl.
Symp. on Performance Analysis of Systems and Software (ISPASS).

[2] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In IEEE Intl. Symp. on Workload Characterization (IISWC).

[3] Shuai Che, Jeremy W Sheaffer, Michael Boyer, Lukasz G Szafaryn, Liang Wang,
and Kevin Skadron. 2010. A characterization of the Rodinia benchmark suite with
comparison to contemporary CMP workloads. In IEEE Intl. Symp. on Workload
Characterization (IISWC).

[4] Intel Core. 2010. i7 Processor Series Datasheet.
[5] Hongwen Dai, Christos Kartsaklis, Chao Li, Tomislav Janjusic, and Huiyang Zhou.

2014. RACB: Resource Aware Cache Bypass on GPUs. In Intl. Symp. on Computer
Architecture and High Performance Computing Workshop (SBAC-PADW).

[6] KI Farkas and NP Jouppi. 1994. Complexity/performance tradeoffs with non-
blocking loads. In Intl. Symp. on Computer Architecture (ISCA).

[7] Yongbin Gu and Lizhong Chen. 2018. CART: Cache Access Reordering Tree for
Efficient Cache and Memory Accesses in GPUs. In Intl. Conf. on Computer Design
(ICCD).

[8] SunpyoHong andHyesoon Kim. 2009. An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness. In Intl. Symp. on
Computer Architecture (ISCA).

[9] Magnus Jahre and Lasse Natvig. 2011. A high performance adaptive miss handling
architecture for chip multiprocessors. In Transactions on High-Performance
Embedded Architectures and Compilers IV.

[10] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. 2014. MRPB: Memory
request prioritization for massively parallel processors. In Intl. Symp. on High
Performance Computer Architecture (HPCA).

[11] Naifeng Jing, Yao Shen, Yao Lu, Shrikanth Ganapathy, Zhigang Mao, Minyi Guo,
Ramon Canal, and Xiaoyao Liang. 2013. An energy-efficient and scalable eDRAM-
based register file architecture for GPGPU. In Intl. Symp. on Computer Architecture
(ISCA).

[12] Mahmoud Khairy, Mohamed Zahran, and Amr G Wassal. 2015. Efficient utiliza-
tion of GPGPU cache hierarchy. In Workshop on General Purpose Processing using
GPUS (GPGPU).

[13] Youngsok Kim, Jaewon Lee, Jae-Eon Jo, and Jangwoo Kim. 2014. GPUdmm:
A high-performance and memory-oblivious GPU architecture using dynamic
memory management. In Intl. Symp. on High Performance Computer Architecture
(HPCA).

[14] David Kroft. 1981. Lockup-free instruction fetch/prefetch cache organization. In
Intl. Symp. on Computer Architecture (ISCA).

[15] Shin-Ying Lee, Akhil Arunkumar, and Carole-Jean Wu. 2015. CAWA: coordinated
warp scheduling and cache prioritization for critical warp acceleration of GPGPU
workloads. In Intl. Symp. on Computer Architecture (ISCA).

[16] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M Aamodt, and Vijay Janapa Reddi. 2013. GPUWattch: enabling energy
optimizations in GPGPUs. In Intl. Symp. on Computer Architecture (ISCA).

[17] Lingda Li, Ari B Hayes, Shuaiwen Leon Song, and Eddy Z Zhang. 2016. Tag-split
cache for efficient GPGPU cache utilization. In Intl. Conf. on Supercomputing
(ICS).

[18] Gabriel H Loh. 2008. 3D-stacked memory architectures for multi-core processors.
In Intl. Symp. on Computer Architecture (ISCA).

[19] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A tool to model large caches. HP laboratories (2009).

[20] Inc NanGate. 2017. Nangate freePD45 open cell library. Avalible at:
http://http://www.nangate.com/ (2017).

[21] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov,
Onur Mutlu, and Yale N Patt. 2011. Improving GPU performance via large warps
and two-level warp scheduling. In Intl. Symp. on Microarchitecture (MICRO).

[22] NVIDIA Nsight and Visual Studio Edition. 2013. 3.0 User Guide. NVIDIA Corpo-
ration (2013).

[23] Nvidia. 2014. NVIDIA GeForce GTX 980 White Paper.
[24] GPU Nvidia. 2013. Computing SDK. Gpu computing sdk, Avalible at:

https://developer. nvidia. com/gpu-computing-sdk (2013).
[25] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Architectural

support for address translation on gpus: Designing memory management units
for cpu/gpus with unified address spaces. In Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

[26] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M Beckmann,
Mark DHill, Steven K Reinhardt, and David AWood. 2013. Heterogeneous system
coherence for integrated CPU-GPU systems. In Intl. Symp. on Microarchitecture
(MICRO).

[27] Moinuddin K Qureshi, David Thompson, and Yale N Patt. 2005. The V-Way cache:
demand-based associativity via global replacement. In Intl. Symp. on Computer
Architecture (ISCA).

[28] Timothy G Rogers, Mike O’Connor, and Tor M Aamodt. 2012. Cache-conscious
wavefront scheduling. In Intl. Symp. on Microarchitecture (MICRO).

[29] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-Mei W Hwu. 2012. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing (2012).

[30] Yingying Tian, Sooraj Puthoor, Joseph L Greathouse, Bradford M Beckmann, and
Daniel A Jiménez. 2015. Adaptive GPU cache bypassing. In Workshop on General
Purpose Processing using GPUS (GPGPU).

[31] James Tuck, Luis Ceze, and Josep Torrellas. 2006. Scalable cache miss handling
for high memory-level parallelism. In Intl. Symp. on Microarchitecture (MICRO).

[32] Bin Wang, Yue Zhu, and Weikuan Yu. 2016. OAWS: Memory Occlusion Aware
Warp Scheduling. In Intl. Conf. on Parallel Architecture and Compilation Techniques
(PACT).

[33] Intel Xeon. 2012. E5 Processor Series Datasheet.
[34] Xiaolong Xie, Yun Liang, Guangyu Sun, and Deming Chen. 2013. An efficient

compiler framework for cache bypassing on GPUs. In IEEE/ACM Intl. Conf. on
Computer-Aided Design (ICCAD).

[35] Xiaolong Xie, Yun Liang, Yu Wang, Guangyu Sun, and Tao Wang. 2015. Coor-
dinated static and dynamic cache bypassing for GPUs. In Intl. Symp. on High
Performance Computer Architecture (HPCA).


